Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract BackgroundWoody biomass has been considered as a promising feedstock for biofuel production via thermochemical conversion technologies such as fast pyrolysis. Extensive Life Cycle Assessment studies have been completed to evaluate the carbon intensity of woody biomass-derived biofuels via fast pyrolysis. However, most studies assumed that woody biomass such as forest residues is a carbon–neutral feedstock like annual crops, despite a distinctive timeframe it takes to grow woody biomass. Besides, few studies have investigated the impacts of forest dynamics and the temporal effects of carbon on the overall carbon intensity of woody-derived biofuels. This study addressed such gaps by developing a life-cycle carbon analysis framework integrating dynamic modeling for forest and biorefinery systems with a time-based discounted Global Warming Potential (GWP) method developed in this work. The framework analyzed dynamic carbon and energy flows of a supply chain for biofuel production from pine residues via fast pyrolysis. ResultsThe mean carbon intensity of biofuel given by Monte Carlo simulation across three pine growth cases ranges from 40.8–41.2 g CO2e MJ−1(static method) to 51.0–65.2 g CO2e MJ−1(using the time-based discounted GWP method) when combusting biochar for energy recovery. If biochar is utilized as soil amendment, the carbon intensity reduces to 19.0–19.7 g CO2e MJ−1(static method) and 29.6–43.4 g CO2e MJ−1in the time-based method. Forest growth and yields (controlled by forest management strategies) show more significant impacts on biofuel carbon intensity when the temporal effect of carbon is taken into consideration. Variation in forest operations and management (e.g., energy consumption of thinning and harvesting), on the other hand, has little impact on the biofuel carbon intensity. ConclusionsThe carbon temporal effect, particularly the time lag of carbon sequestration during pine growth, has direct impacts on the carbon intensity of biofuels produced from pine residues from a stand-level pine growth and management point of view. The carbon implications are also significantly impacted by the assumptions of biochar end-of-life cases and forest management strategies.more » « less
-
Abstract This study performs techno‐economic analysis and Monte Carlo simulations (MCS) to explore the effects that variations in biomass feedstock quality have on the economic feasibility of fast pyrolysis biorefineries using decentralized preprocessing sites (i.e., depots that produce pellets). Two biomass resources in the Southeastern United States, that is, pine residues and switchgrass, were examined as feedstocks. A scenario analysis was conducted for an array of different combinations, including different pellet ash control levels, feedstock blending ratios, different biorefinery capacities, and different biorefinery on‐stream capacities, followed by a comparison with the traditional centralized system. MCS results show that, with depot preprocessing, variations in the feedstock moisture and feedstock ash content can be significantly reduced compared with a traditional centralized system. For a biorefinery operating at 100% of its designed capacity, the minimum fuel selling price (MFSP) of the decentralized system is $3.97–$4.39 per gallon gasoline equivalent (GGE) based on the mean value across all scenarios, whereas the mean MFSP for the traditional centralized system was $3.79–$4.12/GGE. To understand the potential benefits of highly flowable pellets in decreasing biorefinery downtime due to feedstock handling and plugging problems, this study also compares the MFSP of the decentralized system at 90% of its designed capacity with a traditional system at 80%. The analysis illustrates that using low ash pellets mixed with switchgrass and pine residues generates a more competitive MFSP. Specifically, for a biorefinery designed for 2,000 oven dry metric ton per day, running a blended pellet made from 75% switchgrass and 25% pine residues with 2% ash level, and operating at 90% of designed capacity could make an MFSP between $4.49 and $4.71/GGE. In contrast, a traditional centralized biorefinery operating at 80% of designed capacity marks an MFSP between $4.72 and $5.28.more » « less
An official website of the United States government
